
Koschei
Continuous integration in Koji

Author:
Mikolaj Izdebski mizdebsk@redhat.com

Date: 11th July 2014

Abstract

Koschei is a service for scratch-rebuilding RPM packages in
Fedora Koji instance when their build-dependencies change or
after some time elapse.
This presentation is about the problem Koschei is trying to
solve, design decisions, system structure, current status, plans
for the nearest future and further evolution possibilities.



Section 1
The problem



The problem

Where is the problem?

Buildability as a measure of software quality
tests ran during build

Constantly growing number of packages
software collections

People are unaware of FTBFS
bugs are not seen until mass rebuild
or worse, until there is critical bug to fix



The problem

Time elapse

Time elapse increases cost of fixing bugs

People forget what they were working on
More bugs appear

Harder to discover where the real problem is
Fixing means working in recursive, parallel mode

to fix A you need to fix B first
Koji repo regeneration
ARM builders



Section 2

The solution



The solution

What can be done

Continuous integration

continuous monitoring of package buildability

helping maintainers to reason on FTBFS



The solution

How?

Rebuild all packages from time to time
weekly?
too long delay

Rebuild important packages more often
nightly?
only a few packages can be rebuilt

Rebuild all rev deps after each update
way too much resources needed

Middle ground solution?



The solution

Where?

Options considered
maintainers’ machines
Fedora Koji
Copr
cloud

The choice – Fedora Koji
existing, stable platform
spare resources
maintained by Fedora infrastructure
no networking problems
canonical build environment



The solution

Koschei

A tool for continuously scratch-rebuilding packages
using Fedora build infrastructure – Koji



The solution

Etymology

KOji Ccontinuous Integration

Where did the name came from

$ grep -xi ko*c*i /usr/share/dict/words

Koschei



Section 3

Design



Design

The concept

A set of packages

Reporting buildability

Resource monitoring

Rebuild prioritizing



Design

Priority

Time since last rebuild
Dependency changes

consider distances

Previous state
prioritize failures

Importance
aka static priority

Manual trigger
aka dynamic priority

Plugins



Design

Database

Packages
name
priorities

Builds
status
Koji task ID
time stamps
logs

Repositories
dependencies

Package groups



Design

Architecture overview



Design

Watcher

Await Koji build state changes
fedmsg
periodic polling as fallback

Await new Koji repos
not builds, not tags
fedmsg
no polling

Analyze dependency changes
hawkey
download SRPM headers

Update priorities
increase priority on dependency change
reset priority on build success



Design

Scheduler

Schedule builds for execution
priority scheduling

Conditions
package is not disabled
build dependencies are resolvable
priority is high enough
Koji load is low enough



Design

Submitter

Request scratch builds on Koji
from existing SRPM
very low priority
needs Koji certificate



Design

Reporter

Generate HTML reports

Per group, not per maintainer

Failures separately

Dependency problems

Detailed package history



Design

RPC

Add and disable packages

Adjust package importance

Force build



Section 4

Implementation



Implementation

Implementation

Python

PostgreSQL

SQLAlchemy, Alembic

Modularity

systemd



Implementation

Current state

code at Github
packaged as RPM

not yet in Fedora

running at Openstack



Creating SRPM metadata

$ curl http://koji.fp.o/.../eclipse-4.4.0-5.fc21.src.rpm \

| tee package.src.rpm \

| rpm -qp /dev/stdin >/dev/null

curl: (23) Failed writing body (2332 != 4096)

$ ls -go

total 20

-rw-rw-r--. 1 20480 Jul 11 09:10 package.src.rpm

$ createrepo .

Spawning worker 0 with 1 pkgs

Workers Finished

Saving Primary metadata

Saving file lists metadata

Saving other metadata

Generating sqlite DBs

Sqlite DBs complete



Section 5
Future



Future

TODO

Move to Fedora

within of scope of Env and Stacks WG
already announced
cloud machine
Koji certificate
extra Koji hardware?
storage?

Improve reporting

feedback and new ideas needed!

Generate SRPM metadata

compose is too late



Future

Links

Code repository

https://github.com/msimacek/koschei

https://github.com/msimacek/koschei


The end.
Thanks for listening.


	The problem
	The solution
	Design
	Implementation
	Future

